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Abstract9

We introduce cartographer , a tool for editing and rewriting string diagrams of symmetric10

monoidal categories. Our approach is principled: the layout exploits the isomorphism between string11

diagrams and monogamous cospans of hypergraphs; the implementation of rewriting is based on the12

soundness and completeness of convex double-pushout rewriting for string diagram rewriting.13
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1 Introduction17

String diagrammatic theories are increasingly important in computer science. They have18

been recently been used in a number of applications, including enabling the simplification19

of quantum circuits using the ZX-calculus [10], compositional descriptions of models of20

concurrency such as Petri Nets [18, 6], compositional accounts of signal flow graphs in control21

theory [7, 11, 1] and Bayesian reasoning [8, 14, 13]. These examples, as well as many others,22

work with the language of symmetric monoidal categories (SMCs). This paper addresses the23

need for tool support for symmetric monoidal theories - graphical rewriting systems of SMCs.24

cartographer is a graphical editor and proof assistant for symmetric monoidal theories.25

It provides a graphical string diagram editor to construct morphisms, and a prover in26

which rewrite rules can be specified and executed. Further, cartographer has a firm27

theoretical foundation, its rewriting backend based on recent work in the area [5, 3, 20, 4].28

The goal of this paper is to motivate cartographer , explain the basic features of the29

backend and the front end, and describe some of the technical challenges that were solved30

in creating it. The tool and its user guide are available on the cartographer website at31

http://cartographer.id/.32

Our motivating example is the rewriting system in Figure 1. The intended semantic33

interpretation is that of binary circuits, where each wire carries an n bit number for some34

fixed n. Green nodes with two outputs copy numbers, those with no outputs discard their35

input, while red nodes perform addition modulo 2n.36

=
=

= =

Figure 1 Example rules for binary circuits with copying ( ), adding ( ), and discarding ( ).
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As well as the rules in Figure 1, this rewriting system implicitly uses three generators;37

atomic sub-diagrams, each with some number of inputs and outputs. These are the copy38

( ), add ( ), and discard ( ) operations. The laws of symmetric monoidal categories39

permit moving generators around up to an isotopy made precise in [15, 19]. For our purposes,40

it suffices to say informally that generators can be slid along wires, and moved around on41

the page, but not rotated. By way of example, consider the equivalent diagrams in Figure 2.42

=

Figure 2 Example of string diagrams considered equal under the laws of SMCs

cartographer allows reasoning modulo the laws of symmetric monoidal categories.43

The user can deform morphisms up to the SMC laws without making proofs unsound, and44

the prover does not require (e.g. when matching the l.h.s. of a rule) the user to explicitly use45

the laws of symmetric monoidal categories. Put another way, the user should not have to46

“untangle” the wires of the diagram before applying a rule of some theory.47

To put this into context, compare cartographer to two “competing” tools: Quan-48

tomatic [17] and Globular [2] (or its more recent descendant, homotopy.io). In a sense,49

cartographer sits between them: providing a more general setting than Quantomatic,50

while at the same time being more focussed than Globular.51

software generality geometric intuition
Quantomatic compact-closed generators can implicitly be moved and wires bent back
Cartographer symmetric monoidal generators can implicitly be moved
Globular higher categories no implicit deformations permitted

52

Quantomatic deals with (less general) compact closed categories, in which not only may53

generators be moved, but wires may be “bent backwards”. In terms of our circuit analogy, this54

would mean feedback, e.g. as used in a simple latch. cartographer allows such feedback,55

but as an explicit compact closed structure in the theory at hand, not implicitly assumed to56

exist by the underlying tool. On the other hand, Globular is much more general, aiming to57

support diagrammatic reasoning in higher categories. While this allows more freedom, when58

working with SMCs it comes at the cost of having to explicitly use SMC laws in proofs, e.g.59

using the functoriality of the monoidal product to slide two generators past each other.60

Contributions61

The contribution of cartographer is twofold. First, in the back end we implement an62

algorithm for matching and rewriting modulo the laws of SMC based on the adequacy result63

of [5]. The algorithm works with a data structure for Open Hypergraphs, which we introduce64

in this paper. Second, in the front end, we use an algorithm for the layout of these directed65

acyclic open hypergraphs which behaves well under rewriting and deformation of diagrams.66

homotopy.io
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2 Directed Acyclic Open Hypergraphs67

The main problem of implementing rewriting modulo symmetric monoidal structure is in68

finding a data structure in which equivalent terms have a single representation. For example,69

the two equivalent diagrams of Figure 2 should have the same underlying representation.70

Our approach is principled, because it uses the isomorphism between equivalent terms and71

cospans of hypergraphs found in [5]. Starting from this result, we propose an alternative but72

equivalent representation which is more convenient to work with.73

We begin with an overview of the open hypergraphs of [5], and the cartographer data74

structure— illustrated in Figure 3 along with the corresponding string diagram. Beginning75

with the central (open) hypergraph, hyperedges are denoted , and represent the76

generators of the string diagram. There are two kinds of nodes, denoted •. Firstly (ordered)77

boundary nodes, connected to a single wire (input or output, but not both) Secondly, internal78

nodes, having exactly one input and one output wire, thus satisfying monogamicity [5].79

In contrast, the hypergraphs of cartographer are closed, and so nodes are rendered80

simply as wires, each with exactly one input and one output connection. Boundary nodes81

are replaced by adding special generators to the signature of the hypergraph, s (boundary82

source) and t (boundary target). Nodes are then uniquely identified by the two “ports” they83

connect— a port being a specific position on the boundary of a hyperedge.84

c

a c

d

c

a c

d

s t

Figure 3 From left to right: a string diagram, its open hypergraph representation with signature
Σ = {a, c, d}, and the equivalent closed hypergraph with signature Σ′ = Σ ∪ {s, t}

I Definition 1. A k → m cartographer hypergraph (Σ, E,W ) consists of:85

the signature Σ, which can be thought of as the set of types of hyperedges. Each has86

arity ar : Σ→ N× N, giving the number of inputs and outputs. We require that the Σ87

contains boundary generators σ, τ , with ar(σ) = (0, k) and ar(τ) = (m, 0);88

the set of hyperedges E, with a function typ : E → Σ that assigns types to hyperedges.89

Moreover, there are boundary hyperedges {s, t} ⊆ E s.t. typ−1(σ) = {s}, typ−1(τ) = {t};90

the set of wires W . Given a hyperedge e ∈ E, if dim(type(e)) = (p, q) then we say e has91

p input ports, denoted e1, e2, . . . , eq, and q output ports denoted e1, e2, . . . , eq. A wire92

w ∈ W is an ordered pair (ei, f
j) of a source port ei and a target port f j , denoting a93

directed connection from the ith output of e to the jth input of f .94

3 Visualising and Editing Open Hypergraphs95

In contrast to Quantomatic [17] which uses a force-directed layout, and Globular [2] which96

has a fixed style for morphism layout, we use a layered graph drawing algorithm similar to97

that of Dot [12]. Our reasons for choosing layered graph drawing are as follows. Firstly, it98

was an aesthetic choice to represent string diagrams similarly to how they appear in the99

literature. Secondly, string diagrams drawn with the layered discipline retain a closer link100

with the underlying algebraic description of morphisms, since the term can by easily be101
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read off the string diagram in the form of a composition-of-monoidal-products. Thirdly, in102

contrast to force-directed approaches, the elements of a layered graph layout do not move103

around on the page, which is problematic from a user-experience perspective, because they104

are harder for the user to click. Additionally, force-directed layouts can change significantly105

after a rewrite rule is applied, with little control over the resulting diagram. This can be106

confusing for the user, because the string diagram may look very different. Finally, using107

layered hypergraphs offers a simple and intuitive way to enforce acyclicity: users may only108

connect generators if the target appears to the right of the source.109

Interactive Layered Graph Drawing110

We briefly summarise the interactive layered graph drawing approach of cartographer111

. By “interactive”, we mean to distinguish cartographer ’s layout algorithm from other112

layered graph drawing approaches—such as Dot’s—in which a static graph is given as113

input, and positions of nodes and edges are returned. cartographer allows for the114

incremental construction of hypergraphs, meaning that users begin with a blank canvas, and115

add generators and connections one-by-one. We call it a layered graph drawing approach116

because it uses two key ideas from those approaches: the user of layers, and of pseudonodes.117

I Definition 2. Given a cartographer hypergraph (Σ, E,W ) and e 6= e′ ∈ E, there is118

a directed path from e to e′ if there exists a sequence (e1, . . . , en) where ei ∈ E, e1 = e,119

en = e′ and for each ei, ei+1 there exist j1, j2 such that ((ei)j1 , (ei+1)j2) ∈W . A layering is120

a function L : E → N such that:121

(i) if there is a directed path from e to e′ then L(e) < L(e′);122

(ii) for every non-boundary hyperedge e ∈ E, L(s) < L(e) < L(t).123

The layering L essentially serves as the “x coordinate” of each hyperedge. The second124

idea from layered graph layout is the use of pseudonodes, which are conceptually related to125

the edge-points of Dixon and Kissinger’s Open Graphs [9], but used here only for layout126

purposes: they prevent wires from crossing generators. For a concrete example of why this is127

desirable, consider Figure 4. In the left-hand diagram, the wire from x to z passes through y128

and it is not clear whether x is connected to y and y to z, or if x is directly connected to z.129

Inserting pseudonodes into the graph clears up the ambiguity.130

x

y

x

y

x

yz z z

Figure 4 Left, a diagram with only generators (rendered • and •), center, the same diagram after
inserting pseudonodes (rendered •), and right, the diagram as it appears with pseudonodes hidden.

The Layout Algorithm131

We briefly outline the layout algorithm used in cartographer . Because the algorithm is132

interactive, it takes the form of a layout state, and a number of actions that the user can133

take. We model these actions as functions of the layout state.134

The layout state is a tuple (H,G) of a hypergraph H as in definition 1, and an integer135

grid G, which keeps track of the positions of generators and pseudonodes as two dimensional136

vectors. Users can perform two actions on the layout state:137
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1. Placing a generator at a specific position on an integer grid138

2. Moving a generator from one position to another139

3. Connecting a source port to a target port140

Moving and placing a generator is straightforward: if a generator e is moved or placed141

such that it would overlap with another generator f , then f is moved down within the same142

layer to make space. However, when connecting ports we must ensure that the hypergraph143

H remains acyclic. This is enforced using the following constraints:144

If generators e, f have layers such that L(e) ≤ L(f), then outputs of f may not be145

connected to inputs of e.146

If a generator f is reachable from e, then f may not be moved such that L(f) ≤ L(e).147

These constraints ensure that layering respects the properties of Definition 2, preserving148

acyclicity. Finally, for every operation, the set of required pseudonodes is maintained, along149

with their positions in G. In particular, this means updates for any operation which changes150

connectivity, or modifies the number of layers between two generators.151

4 Matching, Convexity, Rewriting152

As well as an interactive string diagram editor, cartographer enables diagrammatic153

reasoning. A derivation consists of a series of rewrites, using a set of rules specified by the154

user. A rule consists of two cartographer hypergraphs, the lhs and the rhs, with identical155

boundaries. Rewriting is implemented by double-pushout rewriting of hypergraphs, with156

soundness and completeness guaranteed by [5, Theorem 5.6].157

Applying a rule to a string diagram consists of three steps: finding a match for the lhs a rule,158

checking for convexity, and applying the rewrite rule. A match is an hypergraph embedding159

(an injective, homomorphic mapping of hyperedges and nodes) of open hypergraphs, with160

one subtlety: the boundary ports of the pattern match can map to non-boundary ports in161

the target. cartographer builds matches incrementally by using the backtracking logic162

library logict [16]. Roughly speaking, wires and generators are added to the working match163

until either there are no more unmatched wires or generators, or a contradiction is reached,164

in which case the search backtracks. Candidate matches are then checked for convexity [5],165

which is needed for a rewrite to be valid modulo the laws of SMCs. Roughly speaking, all166

directed paths that start and end in a matched region must remain within the match. Once a167

convex match has been identified, the internal hyperedges of the matched region are removed168

and replaced with the right hand side of the rewrite rule.169

5 Conclusions and Future Work170

cartographer is still in early stages of development. We are working on171

improving the layout algorithms by adapting heuristics from other tools that work with172

layered graphs;173

more advanced features for diagrammatic reasoning, including support for structured174

proofs (using e.g. user-generated Lemmas) and adapting other user-friendly features175

originally developed for theorem provers and proof assistants;176

higher level specification features, such as support for bang-boxes, recursive definitions,177

and proof strategies;178

better decoupling between the rewriting back end and the layout front end, enabling179

extensions such as rewriting modulo compact closed structure.180
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